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Introduction

The development of a fully nonlinear, time-dependent
h y d rodynamic and heat transport code has allowed us to
pursue several very interesting problems in laser beam
self-focusing and filamentation for which the plasma
density and flow velocities are strongly perturbed. Many
t reatments have used time-dependent linearized hydro-
dynamics in two and three dimensions (3-D) where the
plasma motion is limited to directions transverse to the
laser propagation dire c t i o n .1 , 2 A truly nonlinear tre a t m e n t
uses particle-in-cell codes.3 Other nonlinear tre a t m e n t s
have used a steady-state hydrodynamics response where
the electron density is determined by equating the elec-
t ron thermal and ponderomotive forces transverse to the
laser propagation dire c t i o n .4

These approaches ignore some important physical
processes. For example, time-dependent, nonlinear
hydrodynamics is needed to address steepening of
wave fronts, harmonic generation and decay instabili-
ties, all of which play an important role in saturation of
filamentation, stimulated Brillouin scattering (SBS),
and stimulated Raman scattering (SRS). Filamentation
has been studied using 1-D and 2-D nonlinear hydro-
dynamics codes in planar or cylindrical geometry.5 To
our knowledge, the code we now describe is the only
code with fully 3-D nonlinear hydrodynamics coupled
to light wave propagation.

The Hydrodynamics Equations
The hydrodynamic, heat transport equations in con-

servative form are the mass conservation equation

(1)

the momentum conservation equation for the jth com-
ponent of the momentum S

(2)

the ion energy conservation equation

(3)

and the electron energy conservation equation

(4)

In these equations, P is the ion pre s s u re, Pe is the electro n
p re s s u re, Q is the viscosity tensor (with jt h c o m p o-
n e n t Qj), v is the flow velocity, He is a source or sink,
and qe is the heat flow. The momentum is related to
the flow velocity by

(5)

and the electron and ion temperature are related to
the corresponding pre s s u res by a perfect gas equation
of state

(6)

(7)

with ρ = mini. The ionization state is constant and,
at present, quasi-neutrality is assumed, namely 
ne = Z ni. This last assumption will be relaxed in
the near future .

The last term in the momentum equation [Eq. (2)]
re p resents either a gravitation force, as used for
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Pe = ne Te
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R a y l e i g h – Taylor instability calculations,6 or a pon-
d e romotive force, in which case

(8)

Here, v0 is the jitter velocity of the electron in the laser
field E0,

(9)

In Eq. (3), we neglect the ion heat flow and re a l
v i s c o s i t y, which are usually very small. The artificial
viscosity Q is used to handle shocks in the standard
way as will be described shortly.

In Eq. (4), He includes collisional heating (inverse
bremsstrahlung). For problems of interest to date, the
standard flux-limited heat flow

(10)

where

(11)

is ineffective in limiting the heat flow because the gradients
in Te a re small over the scales of interest to filamentation.
On the other hand, nonlocal transport7 can be quite
important. Unfortunately, a nonlinear, nonlocal 3-D tre a t-
ment of electron transport is a re s e a rch project in itself.
Thus, we have taken the approach of linearizing Eq. (4)
about a uniform Te 0 to obtain δTe = Te – Te 0, which is
c a lculated from nonlocal electron transport. The choice
for Te 0 has come either from experimental data or fro m
LASNEX simulations. In most cases of interest, this
a p p roximation has been satisfactory. It becomes question-
able when there are large excursions in density because
of the concomitant large excursions in electron–ion and
e l e c t ro n – e l e c t ron scattering mean-free-paths. Fortunately,
in most applications with such large excursions, self-
focusing is ponderomotively driven rather than thermally
driven. Electron–ion energy exchange terms have been
d ropped in Eqs. (3) and (4) because they are of intere s t
only for nanosecond time scales; in general, filamentation
time scales are much shorter.

For completeness, we include the equation for the
light wave propagation given by the modified parax-
ial equation

(12)

for the complex light-wave envelope amplitude E
oscillating at frequency ω0 and wave vector

(13)

Here, we define

(14)

(15)

the light wave group velocity

(16)

the inverse bremsstrahlung absorption rate ν and the
generalized diffraction operator8

(17)

which extends validity of the paraxial equation to
higher order in k⊥. The numerical solution of Eq. (12)
i s described by Berger et al.2

Numerical Solution of the
Hydrodynamical Equations

We followed the pro c e d u re outlined by Bowers and
Wi l s o n9 and implemented by Miller in 2-D for spherical
or cylindrical geometry.1 0 Our code, called NH3 if uncou-
pled to laser light, or F3D when coupled to laser light, is
3-D Cartesian to match the fast Fourier transform (FFT)
solution techniques used for the light equation solver.

The advection steps in the continuity and energy
equations [Eqs. (1) and (3)] are done similarly. The
equation is split into three 1-D equations, which are
solved successively,

(18)

(19)

(20)

where ρ(+0) and ρ(+1) denote the actual time-iterates,
and the other two quantities are intermediate results.
The advection is done by a 1-D scheme,

(21)
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(22)

(23)

where the subscripts denote spatial position, using Van
Leer‘s second-order upwind monotonic approximation
for    .9,11 The Van Leer method defines

(24)

(25)

(26)

(27)

(28)

(29)

(30)

This scheme guarantees a non-negative density.
P re s s u re changes due to mechanical work on a cell

and artificial viscosity are handled separately. As
with mass continuity, the energy equation is split
into three 1-D equations to be solved successively,
similar to Eqs. (17)–(20):

(31)

Transport is done by a 1-D scheme similar to the
mass equation:

(32)

(33)

(34)

where     is computed exactly the same way as    . The
P∇·v (PdV work) and artificial viscosity at t + ∆t are

done given the momentum equation solution, which is
at time level t +       .

Again, each component of momentum is advected
separately, e.g.,

(35)

Artificial viscosity, pressure gradients, and pondero-
motive force are each treated separately, and transport
is done by an advection scheme:

(36)

where

(37)

(38)

(39)

denotes the average mass-flux in the x- d i re c t i o n
over the cell, and                            are computed using a
slight modification of the Van Leer method defined in
Eqs. (24)–(30) [the slope ∆ ρ3 is excluded from Eq. (29)]:

(40)

After the transport step is complete, the change in
momentum from thermal pressure gradients

(41)

(42)

(43)
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and ponderomotive forces

(44)

(45)

(46)

is calculated, where     is the average over the cell.
The artificial viscosity is handled similarly and has

the form

(47)

where

(48)

and       is the average over the face

(49)

Note that we only keep the diagonal elements fro m
the artificial viscosity term in Eq. (2). Through numeri-
cal experimentation, we have determined that CQ = 1
is a reasonable choice, even in the presence of fairly
steep shocks.

We have also included a time-step controller to allow a
l a rger ∆t when possible, but to ensure that the Courant con-
dition is satisfied. In cases where plasma velocities grow an
o rder of magnitude or more from their initial size, the time
step is decreased so that the numerical scheme is stable.
When coupled to F3D, the time step is never incre a s e d
beyond the limit specified by the light pro p a g a t i o n .

We have tested this hydrodynamics scheme on sev-
eral diff e rent kinds of problems ranging from deflection
of a laser beam in a flowing plasma12 to plasma expan-
sion into a vacuum.13–14

Simulation of the Self-Focusing
of a High-Intensity Laser Beam

As an example of an interaction in which nonlinear
hydrodynamics is important, we show the results of

propagating a 1.06-µm laser beam with initial intensity
of 101 6 W / c m2 t h rough a CH plasma whose initial e l e c-
t ro n density and temperature are uniform with values
of ne = 0.1nc and Te = 1 keV and thus υ0/υe = 2. (These
conditions are similar to those reported by Young et al.1 5)
The laser electric field amplitude at z = 0 is taken to be

(50)

w h e re Lx = Ly = 40 µm, Lz = 100 µm, –Lx ≤ x ≤ Lx, –Ly ≤ y ≤ Ly,
and 0 ≤ z ≤ Lz. The amplitude E0(t) rises from 0 to a
constant peak value over 100 ps. The field is periodic
in the transverse directions, and outgoing at z = zmax.

In Fig. 1(a), isocontours of the laser intensity at 252 ps
are shown. The contours are 2.5, 4.5, 7.5 × 1016 W/cm2,
with the darkest contour being least intense. After
propagating about 50 µm, the laser intensity reaches a
s t rong focus with peak intensity I = 5 × 1 01 7 W / c m2,
after which it breaks apart into about four filaments.
The initial laser power at z = 0 is 100 times the critical
power for self-focusing.16 Pcrit = 9 × 108 W for these
conditions, so we might expect the number of filaments
N ≈P/Pc r i t = 100. The evolution to this highly filamented
state re q u i res simulation of a much longer plasma
because the distance to focus of a filament varies
inversely with power. The distance to the first focus in
steady state can be estimated from the steady-state
spatial growth rate κ as Lf = κ–1 ≅ 23 λ0 for this case.17

The steady-state focus actually is achieved at ~50 λ0.
Isocontours of the electron density associated with

this laser intensity distribution are shown in Fig. 1(b).
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FI G U R E 1 . (a) Energy intensity contours; (b) density contours. Darkest
contours are least intense (a) and least dense (b). ( 1 0 - 0 0 - 0 8 9 6 - 1 9 3 2 p b 0 1 )
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The density at the first focus, i.e. peak intensity, is
essentially zero: 5 × 1 0– 8 nc. The contours in Fig. 1(b) are
10–2 nc, 10–4nc, and 10–5nc, lightest to darkest.

This configuration appears to be near the final state
after a very dynamic epoch. The first focus of the laser
moves backward at high velocity from z = 100 µm at 
47 ps to z = 60 µm at 55 ps or a velocity of 5 × 108 cm/s.
E0(t) is still increasing during this period. The first
focus stays around 55 µm after 60 ps until the end of
the simulation at 252 ps.

A number of filamentation codes, including the
l i nearized hydrodynamic version of F3D, neglect the
plasma motion along the laser propagation direction
because the transverse scale length of the laser hot spot
or speckle is much smaller than the axial scale; the ratio
of lengths is 8f where f is the f-number of the focusing
optic. In this simulation the axial flow is important.
During the time the focus is moving from z = 100 µm
to z = 60 µm at supersonic velocity, it accelerates the
axial flow velocity of the fluid in front of best focus
f rom near 0 to about –3 × 1 08 cm/s. The pondero m o t i v e
force also accelerates plasma supersonically in the pos-
itive axial direction at speeds up to 3 × 108 cm/s and
transversely at velocities ~6 × 107 cm/s. At the sides of
the filaments, the plasma is compressed and heated.
The energy in the supersonically moving plasma, when
dissipated, results in local ion temperatures in excess
of 10 keV. The initial ion temperature was 500 eV.

Summary
As the self-focusing example of Fig. 1 illustrates, fil-

amentation of intense laser beams produces a very
nonlinear response in the plasma. The assumptions of
a linearized treatment quickly break down. The nonlin-
ear hydrocode described in this article has proven to be
very robust and extends our ability to model experi-
ments far beyond the limits of our earlier linear
h y d rodynamics treatment. Yet further improvements
to the physical description are contemplated. The peak
intensity achieved at best focus—5 × 1017 W/cm2 at λ0
= 1.06 µm—is weakly relativistic,              ≈ 0.5, and
suggests that relativistically correct expressions for the
ponderomotive force be used.18 The ions are acceler-
ated to such a high velocity, ~5 × 108 cm/s, that inter-
penetration19 rather than stagnation is anticipated at
the edges of the evacuated regions associated with fila-
ments. This happens because the ion–ion mean-free-
path is estimated in some cases to be larger than the
distance over which the flow decelerates. For similar
reasons, ion heat conduction should be included in
some cases. Inclusion of Poisson‘s equation might also
prove necessary to model the ion–wave dynamics cor-
rectly.20
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